Autmatic Parameter Selection by Minimizing Estimated Error

نویسندگان

  • Ron Kohavi
  • George H. John
چکیده

We address the problem of nding the parameter settings that will result in optimal performance of a given learning algorithm using a particular dataset as training data. We describe a \wrapper" method, considering determination of the best parameters as a discrete function optimization problem. The method uses best-rst search and cross-validation to wrap around the basic induction algorithm: the search explores the space of parameter values, running the basic algorithm many times on training and holdout sets produced by cross-validation to get an estimate of the expected error of each parameter setting. Thus, the nal selected parameter settings are tuned for the speciic induction algorithm and dataset being studied. We report experiments with this method on 33 datasets selected from the UCI and StatLog collections using C4.5 as the basic induction algorithm. At a 90% conndence level, our method improves the performance of C4.5 on nine domains, degrades performance on one, and is statistically indistinguishable from C4.5 on the rest. On the sample of datasets used for comparison, our method yields an average 13% relative decrease in error rate. We expect to see similar performance improvements when using our method with other machine learning algorithms .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothing parameter selection in two frameworks for penalized splines

There are two popular smoothing parameter selection methods for spline smoothing. First, smoothing parameters can be estimated minimizing criteria that approximate the average mean squared error of the regression function estimator. Second, the maximum likelihood paradigm can be employed, under the assumption that the regression function is a realization of some stochastic process. In this arti...

متن کامل

Automatic Parameter Selection by Minimizing Estimated Error

We address the problem of nding the parameter settings that will result in optimal performance of a given learning algorithm using a particular dataset as training data. We describe a \wrapper" method, considering determination of the best parameters as a discrete function optimization problem. The method uses bestrst search and crossvalidation to wrap around the basic induction algorithm: the ...

متن کامل

Minimizing Algebraic Error

This paper gives a widely applicable technique for solving many of the parameter estimation problems encountered in geometric computer vision. A commonly used approach in such parameter minimization is to minimize an algebraic error function instead of a possibly preferable geometric error function. It is claimed in this paper, however, that minimizing algebraic error will usually give excellen...

متن کامل

Sensor Selection Optimization for Aircraft Gas Turbine Engine Health Estimation

Sensor selection optimization can lead to significant improvements in the controllability and observability of a dynamic system. The aim of this research is to investigate optimal or alternate measurement sets for aircraft gas turbine engine health parameter estimation. A brute force search for the best sensor set is too computationally expensive. Therefore, a Monte Carlo approach is used to pe...

متن کامل

Selection of Varying Spatially Adaptive Regularization Parameter for Image Deconvolution

The deconvolution in image processing is an inverse illposed problem which necessitates a trade-off between delity to data and smoothness of a solution adjusted by a regularization parameter. In this paper we propose two techniques for selection of a varying regularization parameter minimizing the mean squared error for every pixel of the image. The rst algorithm uses the estimate of the square...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995